Three-dimensional structure and composition of CA3-->CA1 axons in rat hippocampal slices: implications for presynaptic connectivity and compartmentalization.
نویسندگان
چکیده
Physiological studies of CA3-->CA1 synaptic transmission and plasticity have revealed both pre- and postsynaptic effects. Understanding the extent to which individual presynaptic axonal boutons could provide local compartments for control of synaptic efficacy and microconnectivity requires knowledge of their three-dimensional morphology and composition. In hippocampal slices, serial electron microscopy was used to examine a nearly homogeneous population of CA3-->CA1 axons in the middle of stratum radiatum of area CA1. The locations of postsynaptic densities (PSDs), vesicles, and mitochondria were determined along 75 axon segments (9.1 +/- 2.0 micrometer in length). Synapses, defined by the colocalization of PSDs and vesicles, occurred on average at 2.7 micrometer intervals along the axons. Most varicosities (68%) had one PSD, 19% had 2-4 PSDs, and 13% had none. Synaptic vesicles occurred in 90% of the varicosities. One-half (53%) of the varicosities lacked mitochondria, raising questions about their regulation of ATP and Ca2+, and 8% of varicosities contained only mitochondria. Eleven axons were reconstructed fully. The varicosities were oblong and varied greatly in both length (1.1 +/- 0.7 micrometer) and volume (0.13 +/- 0.14 micrometer 3), whereas the intervaricosity shafts were narrow, tubular, and similar in diameter (0.17 +/- 0.04 micrometer) but variable in length (1.4 +/- 1.2 micrometer). The narrow axonal shafts resemble dendritic spine necks and thus could promote biochemical compartmentalization of individual axonal varicosities. The findings raise the intriguing possibility of localized differences in metabolism and connectivity among different axons, varicosities, and synapses.
منابع مشابه
Three-Dimensional Structure and Composition of CA33CA1 Axons in Rat Hippocampal Slices: Implications for Presynaptic Connectivity and Compartmentalization
Physiological studies of CA33CA1 synaptic transmission and plasticity have revealed both preand postsynaptic effects. Understanding the extent to which individual presynaptic axonal boutons could provide local compartments for control of synaptic efficacy and microconnectivity requires knowledge of their three-dimensional morphology and composition. In hippocampal slices, serial electron micros...
متن کاملModulation of Basal Glutamatergic Transmission by Nicotinic Acetylcholine Receptors in Rat Hippocampal Slices
Objective(s) Nicotinic acetylcholine receptors (nAChRs) regulate epileptiform activity and produce a sustained pro-epileptogenic action within the hippocampal slices. In the present study, we investigated the effect of nAChRs on evoked glutamatergic synaptic transmission in area CA3 and CA1 of rat hippocampal slices to identify possible excitatory circuits through which activation of nAChRs pr...
متن کاملTopological organization of CA3-to-CA1 excitation.
The CA1-projecting axons of CA3 pyramidal cells, called Schaffer collaterals, constitute one of the major information flow routes in the hippocampal formation. Recent anatomical studies have revealed the non-random structural connectivity between CA3 and CA1, but little is known regarding the functional connectivity (i.e. how CA3 network activity is functionally transmitted downstream to the CA...
متن کاملEffects of Ginkgo biloba extract on the structure of Cornu Ammonis in aged rat: A morphometric study
Objective(s):Growing evidence indicates that extract of Ginkgo biloba (EGb) attenuates hippocampal-dependent memory deficit in aged individuals; however, very little is known about the effect of EGb on the structure of hippocampus. Therefore we examined the EGb-induced morphological changes of the Cornu Ammonis (CA) region in aged rats. Materials and Methods: Sixteen aged male Wistar rats, 24 ...
متن کاملThe Lentiviral Vector Pseudotyped by Modified Rabies Glycoprotein Does Not Cause Reactive Gliosis and Neurodegeneration in Rat Hippocampus
Background: A human immunodeficiency virus type 1 (HIV-1)-based lentiviral vector (LV) pseudotyped by a variant of rabies envelope glycoprotein, FUG-B2, has previously been prepared and used in transfection of hippocampal CA1 ("Cornu Ammonis" area 1) neurons. This study aimed to verify reactive gliosis and neuronal damage after injection of the vector into the rat hippocampus. Methods: HEK 293T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 18 20 شماره
صفحات -
تاریخ انتشار 1998